
 Matteo Mattei
 Hello, my name is Matteo Mattei and this is my personal website. I am computer engineer with a long experience in Linux system administration and web software development.
 	 Blog
	 Services
	 Projects
	 About
	 Personal
	 Contacts

 © 2006-2022 Matteo Mattei - all rights reserved.
VAT number: 06751410488. My blog code
 [image: linkedin] [image: rss] [image: twitter] [image: google+] [image: github] [image: facebook]

 Full web server setup with Debian 11 (Bullseye)
 [image: calendar]05 Nov 2022 [image: author]Matteo Mattei [image: tags] linux server mariadb debian nginx php iptables postfix ssl letsencrypt sftp [image: comments] Setup bash and update the system
 apt-get update
apt-get dist-upgrade

 Configure hostname correctly
 Make sure to have the following two lines (with the same format) at the top of your /etc/hosts file
 127.0.0.1 localhost.localdomain localhost
xxx.xxx.xxx.xxx web1.myserver.com web1

 Note: xxx.xxx.xxx.xxx is the public IP address assigned to your server.
 Install all needed packages
 apt install wget vim git acl screen rsync net-tools pwgen mariadb-server mariadb-client nginx iptables shorewall php php-cli php-curl php-dev php-gd php-imagick php-imap php-memcache php-pspell php-tidy php-xmlrpc php-pear php-fpm php-mbstring php-mysql certbot phpmyadmin python3-pip postfix ntp ca-certificates bsd-mailx tree

 Postfix:
 	Select Internet Site
	System mail name: (insert here the FQDN, for example web1.myserver.com)

 Web server to reconfigure automatically:
 	Do not select anything and continue

 Configure database for phpmyadmin with dbconfig-common?
 	Select Yes

 MySQL application password for phpmyadmin:
 	Leave blank and press Ok

 Setup Nginx
 Stop Nginx web server:
 /etc/init.d/nginx stop

 Backup Nginx configuration:
 cp /etc/nginx/nginx.conf /etc/nginx/nginx.conf.backup

 Add the following lines in /etc/nginx/nginx.conf after tcp_nopush on;:
 tcp_nodelay on;
keepalive_timeout 65;

 And the following lines after gizp on;:
 gzip_disable "msie6";

gzip_vary on;
gzip_proxied any;
gzip_comp_level 6;
gzip_buffers 16 8k;
gzip_http_version 1.1;
gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;

max body size
client_max_body_size 10M;

 Copy some nginx configuration files:
 mkdir -p /etc/nginx/certs
ln -s /etc/ssl/certs/ssl-cert-snakeoil.pem /etc/nginx/certs/server.crt
ln -s /etc/ssl/private/ssl-cert-snakeoil.key /etc/nginx/certs/server.key

mkdir -p /etc/nginx/global
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/codeigniter_production.conf > /etc/nginx/global/codeigniter_production.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/codeigniter_testing.conf > /etc/nginx/global/codeigniter_testing.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/common.conf > /etc/nginx/global/common.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/dokuwiki.conf > /etc/nginx/global/dokuwiki.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/phpmyadmin.conf > /etc/nginx/global/phpmyadmin.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/plainphp.conf > /etc/nginx/global/plainphp.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/ssl.conf > /etc/nginx/global/ssl.conf
wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/nginx/global/wordpress.conf > /etc/nginx/global/wordpress.conf

 Restart Nginx:
 /etc/init.d/nginx restart

 Setup let’s encrypt
 pip3 install tld
certbot register --agree-tos -m <your@email>

 Setup MariaDB
 Secure MariaDB installation:
 mysql_secure_installation

 	Enter current password for root (enter for none): [ENTER]
	Switch to unix_socket authentication [Y/n] Y
	Change the root password? [Y/n] Y
	New password: MARIAB_ROOT_PASSWORD
	Re-enter new password: MARIAB_ROOT_PASSWORD
	Remove anonymous users? [Y/n] Y
	Disallow root login remotely? [Y/n] Y
	Remove test database and access to it? [Y/n] Y
	Reload privilege tables now? [Y/n] Y

 Set MariaDB root password in a configuration file (the same password configured before!)
 cat << EOF > /root/.my.cnf
[client]
user = root
password = MARIADB_ROOT_PASSWORD
EOF

 Optional enable MySQL slow query logging (often useful during slow page load debugging):
 sed -i "{s/^#slow_query_log_file /slow_query_log_file /g}" /etc/mysql/mariadb.conf.d/50-server.cnf
sed -i "{s/^#long_query_time /long_query_time /g}" /etc/mysql/mariadb.conf.d/50-server.cnf
sed -i "{s/^#log_slow_verbosity /log_slow_verbosity /g}" /etc/mysql/mariadb.conf.d/50-server.cnf
sed -i "{s/^#log-queries-not-using-indexes/log-queries-not-using-indexes/g}" /etc/mysql/mariadb.conf.d/50-server.cnf

 MySQL is now configured, so restart it:
 /etc/init.d/mariadb restart

 Configure Shorewall firewall rules
 Copy the default configuration for one interface:
 cd /usr/share/doc/shorewall/examples/one-interface
cp interfaces /etc/shorewall/
cp policy /etc/shorewall/
cp rules /etc/shorewall/
cp zones /etc/shorewall/

 Now open /etc/shorewall/policy file and change the line:
 net all DROP info

 removing info directive given it fills the system logs:
 net all DROP

 Now open /etc/shorewall/rules and add the following rules at the bottom of the file:
 HTTP/ACCEPT net $FW
HTTPS/ACCEPT net $FW
SSH/ACCEPT net $FW

 NOTE: in case you want to allow ICMP (Ping) traffic from a specific remote hosts you need to add a rule similar to the following where xxx.xxx.xxx.xxx is the remote IP address, before the Ping(DROP) rule:
 Ping(ACCEPT) net:xxx.xxx.xxx.xxx $FW

 Now edit /etc/default/shorewall and change startup=0 to startup=1 You are now ready to start the firewall:
 /etc/init.d/shorewall start

 Setup Postfix
 Stop postfix server:
 /etc/init.d/postfix stop

 Edit /etc/mailname and set your server domain name, for example:
 server1.mycompany.com

 Restart Postfix:
 /etc/init.d/postfix start

 Select correct timezone
 dpkg-reconfigure tzdata
Select your timezone (for example Europe/Rome)

 Log rotation
 In order to correctly log files you need to adjust logrotate configuration for Nginx:
 cat << EOF >> /etc/logrotate.d/nginx
/home/*/*/logs/*.log {
 daily
 missingok
 rotate 14
 compress
 delaycompress
 notifempty
 create 0640 www-data adm
 sharedscripts
 prerotate
 if [-d /etc/logrotate.d/httpd-prerotate]; then \
 run-parts /etc/logrotate.d/httpd-prerotate; \
 fi \
 endscript
 postrotate
 invoke-rc.d nginx rotate >/dev/null 2>&1
 endscript
}
EOF

 Install virtualhost manager
 wget -q -O - https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/lemp_manager.py > /usr/local/sbin/lemp_manager.py
chmod 770 /usr/local/sbin/lemp_manager.py

 Download also the tools that will be used with cron:
 cd /root/cron_scripts
wget https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/cron_scripts/backup_mysql.sh
wget https://raw.githubusercontent.com/matteomattei/servermaintenance/master/Debian11/cron_scripts/mysql_optimize.sh
chmod 770 *.sh

 Configure CRON
 Edit /etc/crontab and add the following lines at the bottom:
 # mysql optimize tables
3 4 * * 7 root /root/cron_scripts/mysql_optimize.sh

mysql backup
32 4 * * * root /root/cron_scripts/backup_mysql.sh

 How to use virtualhost manager
 You can use the virtualhost manager for adding or removing virtualhosts:
 # lemp_manager

Usage:
/usr/local/sbin/lemp_manager -a|--action=<action> [-d|--domain=<domain>] [-A|--alias=<alias>] [options]

Parameters:
	-a|--action=ACTION
		it is mandatory
	-d|--domain=domain.tld
		can be used only with [add_domain, remove_domain, add_alias, get_certs, get_info]
	-A|--alias=alias.domain.tld
		can be used only with [add_alias, remove_alias, get_info]

Actions:
	add_domain	Add a new domain
	add_alias	Add a new domain alias to an existent domain
	remove_domain	Remove an existent domain
	remove_alias	Remove an existent domain alias
	get_certs	Obtain SSL certificate and deploy it
	get_info	Get information of a domain or a domain alias (username)

Options:
	-f|--fakessl	Use self signed certificate (only usable with [add_domain, add_alias])

 List of some useful openssl commands
 [image: calendar]05 Apr 2022 [image: author]Matteo Mattei [image: tags] security openssl ssl encryption certificates [image: comments] This is a list of some useful openssl commands I used. Just a brief description of what you need to to and the actual command, no more!
 	Verify if a certificate belongs to a CA:

 openssl verify -CAfile ca.pem certificate.pem

 	Verify if a certificate and a key matches (hashes must be equal):

 openssl x509 -noout -modulus -in certificate.pem | openssl md5
openssl rsa -noout -modulus -in key.pem | openssl md5

 	Print certificate information

 openssl x509 -in certificate.pem -noout -text

 	Check a CSR:

 openssl req -text -noout -verify -in csr.pem

 	Check a private key:

 openssl rsa -in key.pem -check

 	Check a PKCS12:

 openssl pkcs12 -info -in key.p12

 	Generate key and certificate (CA)

 openssl req -new -x509 -days 365 -keyout ca-key.pem -out ca-cert.pem

 	Generate a randomic private key of 4096 bits

 openssl genrsa -out privkey.pem 4096

 	Generate a CSR (certificate signing request):

 openssl req -new -sha256 -key privkey.pem -out csr.pem

 	Generate a certificate starting from CSR and sign it with the CA:

 openssl x509 -req -days 365 -in csr.pem -CA ca-cert.pem -CAkey ca-key.pem -CAcreateserial -out certificate.pem

 	Convert pkcs7 certificate to pem:

 openssl pkcs7 -inform der -in certificate.p7c -print_certs -out certificate.pem

 	Convert pfx file to pem (certificate + private key):

 openssl pkcs12 -in file.pfx -nocerts -out privkey.pem
openssl pkcs12 -in file.pfx -clcerts -nokeys -out cert.pem

// remove password from the private key
openssl rsa -in privkey.pem -out key.pem

 Convert old NodeJs applications to ES6 modules
 [image: calendar]23 Dec 2021 [image: author]Matteo Mattei [image: tags] nodejs [image: comments] Nowadays every Nodejs application should be converted to ES6 module because it brings several benefits:
 	Modules may be executed any number of times, but are loaded only once, thus improving performance.
	Module scripts may be shared by multiple applications.
	Modules help identify and remove naming conflicts.

 The biggest difference between standard javascript library and an ES6 module is how we include a library (which can be either within your project or external). The standard classic way is to use const library = require(‘library-name’) but with ES6 modules we have to use import library from ‘library-name’.
 In order to support the import keyword you have to add the following line to the package.json of your application:
 "type": "module"

 In this way you are telling npm that your application is a pure ES6 module.
 Then you have to change all require(xxx) statements with import xxx from ‘yyy’. In case you want to use an external library which is not a pure ES6 module you can always include it with this syntax:
 import theNameYouWant from 'official-library-name'

 In case you want to use a library which is placed inside your application you can use this syntax:
 import theNameYouWant from './path/to/mylibrary.js'

 And mylibrary.js can export a default object with all functions like this:
 import axios from 'axios';

export default {
	run: function(){
		console.log('run');
	},
	sum: function(x, y){
		console.log(`Sum is ${x+y}`);
	},
	get: async function(){
		return await axios.get('https://github.com/matteomattei/matteomattei.github.io/raw/master/public/logo_professtional.jpg');
	}
}

 And can be used in this way:
 import mylib from './path/to/mylibrary.js'

mylib.run(); // prints 'run'
mylib.sum(2,3); // prints 'Sum is 5';
let getResult = await mylib.get();
console.log(Buffer.from(getResult.data).length); // prints the size of the image

 You can also export single functions from your library like this:
 import axios from 'axios';

export function run() {
 console.log("run");
}
export function sum(x, y) {
 console.log(`Sum is ${x + y}`);
}
export async function get() {
 return await axios.get(
 "https://github.com/matteomattei/matteomattei.github.io/raw/master/public/logo_professtional.jpg"
);
}

 In this case you have to use it in this way:
 import * as mylib from './path/to/mylibrary.js'

mylib.run(); // prints 'run'
mylib.sum(2,3); // prints 'Sum is 5';
let getResult = await mylib.get();
console.log(Buffer.from(getResult.data).length); // prints the size of the image

 Otherwise you can selectively import only the function you need:
 import {run, sum, get} from './path/to/mylibrary.js'

run(); // prints 'run'
sum(2,3); // prints 'Sum is 5';
let getResult = await get();
console.log(Buffer.from(getResult.data).length); // prints the size of the image

 Remember:
 	You have to add type: “module” to your package.json file.
	You can use await directly in your main module without a wrap of an async function.
	Your code must be implicitly strict.

 Client and server SSL mutual authentication with NodeJs
 [image: calendar]26 Dec 2020 [image: author]Matteo Mattei [image: tags] security nodejs server tcp certificates openssl [image: comments] In order to communicate securely between server and client it is important not only to cipher the channel but also trust both endpoints. To do this, a common practice is to do mutual authentication between client and server.
 In this post I show you how to implement mutual authentication in Nodejs.
 Assume we want to create a mutual authentication channel between a server running on server.aaa.com and a client running on client.bbb.com. Keep in mind the domain names because they are important in the certificates creation.
 First of all we need to generate certificates. Obviously you can use certificates released by any certification authority but for the purpose of the article I am going to create self signed certificates and related CA.
 Step 1: Create a working folder and setup hosts file
 // AS USER
$ mkdir ~/mutual_authentication_example
$ cd ~/mutual_authentication_example

// AS ROOT
echo '127.0.0.1 server.aaa.com' >> /etc/hosts
echo '127.0.0.1 client.bbb.com' >> /etc/hosts

 Step 2: Generate server certificates
 We are going to create a Certification Authority (CA) certificate for the server with 1 year validity and the related key.
 $ openssl req -new -x509 -days 365 -keyout server-ca-key.pem -out server-ca-crt.pem
Generating a RSA private key
...+++++
.......................................+++++
writing new private key to 'ca-key.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:Florence
Locality Name (eg, city) []:Campi Bisenzio
Organization Name (eg, company) [Internet Widgits Pty Ltd]:AAA Ltd
Organizational Unit Name (eg, section) []:DevOps
Common Name (e.g. server FQDN or YOUR name) []:aaa.com
Email Address []:info@aaa.com

 The PEM pass phrase is optional. The other questions are not mandatory but it’s better if you answer all. The most important question is the Common Name which should be the server main domain (aaa.com).
 Now we generate the actual server certificate which will be used in the ssl handshake. First of all we have to generate a random key (4096 bit length in our example):
 $ openssl genrsa -out server-key.pem 4096
Generating RSA private key, 4096 bit long modulus (2 primes)
.........++++
...................++++
e is 65537 (0x010001)

 Then generate a Certificate Signing Request (CSR) with the key we have generated:
 $ openssl req -new -sha256 -key server-key.pem -out server-csr.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:Florence
Locality Name (eg, city) []:Campi Bisenzio
Organization Name (eg, company) [Internet Widgits Pty Ltd]:AAA Ltd
Organizational Unit Name (eg, section) []:DevOps
Common Name (e.g. server FQDN or YOUR name) []:server.aaa.com
Email Address []:info@aaa.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

 Pay attention to the Common Name which must have the same name of the host will serve the application (server.aaa.com). As final step, generate the server certificate (validity 1 year) from the CSR previously created and sign it with the CA key:
 $ openssl x509 -req -days 365 -in server-csr.pem -CA server-ca-crt.pem -CAkey server-ca-key.pem -CAcreateserial -out server-crt.pem
Signature ok
subject=C = IT, ST = Florence, L = Campi Bisenzio, O = AAA Ltd, OU = DevOps, CN = server.aaa.com, emailAddress = info@aaa.com
Getting CA Private Key
Enter pass phrase for server-ca-key.pem:

 The password requested is the one inserted during CA key generation. To verify the certificate signature against the CA you can issue the following command:
 $ openssl verify -CAfile server-ca-crt.pem server-crt.pem
server-crt.pem: OK

 Now we have all the server certificates we need!
 -rw-rw-r-- 1 matteo matteo 1440 dic 26 12:52 server-ca-crt.pem
-rw-rw-r-- 1 matteo matteo 41 dic 26 17:48 server-ca-crt.srl
-rw------- 1 matteo matteo 1854 dic 26 12:51 server-ca-key.pem
-rw-rw-r-- 1 matteo matteo 1671 dic 26 17:48 server-crt.pem
-rw-rw-r-- 1 matteo matteo 1785 dic 26 17:34 server-csr.pem
-rw------- 1 matteo matteo 3243 dic 26 17:30 server-key.pem

 Step 3: Generate client certificates
 Now it’s time to do the same steps for the Client. First of all create a Certification Authority (CA) certificate for the client with 1 year validity and the related key.
 $ openssl req -new -x509 -days 365 -keyout client-ca-key.pem -out client-ca-crt.pem
Generating a RSA private key
..+++++
...+++++
writing new private key to 'client-ca-key.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:Rome
Locality Name (eg, city) []:Rome
Organization Name (eg, company) [Internet Widgits Pty Ltd]:BBB Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:bbb.com
Email Address []:info@bbb.com

 The PEM pass phrase is optional. The other questions are not mandatory but it’s better if you answer all. The most important question is the Common Name which should be the client main domain (bbb.com).
 Now we generate the actual client certificate which will be used in the ssl handshake. First of all we have to generate a random key (4096 bit length in our example):
 $ openssl genrsa -out client-key.pem 4096
Generating RSA private key, 4096 bit long modulus (2 primes)
..............++++
..++++
e is 65537 (0x010001)

 Then generate a Certificate Signing Request (CSR) with the key we have generated:
 $ openssl req -new -sha256 -key client-key.pem -out client-csr.pem
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IT
State or Province Name (full name) [Some-State]:Rome
Locality Name (eg, city) []:Rome
Organization Name (eg, company) [Internet Widgits Pty Ltd]:BBB Ltd
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:client.bbb.com
Email Address []:info@bbb.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

 Pay attention to the Common Name which must have the same name of the host will serve the application (client.bbb.com). As final step, generate the client certificate (validity 1 year) from the CSR previously created and sign it with the CA key:
 $ openssl x509 -req -days 365 -in client-csr.pem -CA client-ca-crt.pem -CAkey client-ca-key.pem -CAcreateserial -out client-crt.pem
Signature ok
subject=C = IT, ST = Rome, L = Rome, O = BBB Ltd, CN = client.bbb.com, emailAddress = info@bbb.com
Getting CA Private Key
Enter pass phrase for client-ca-key.pem:

 The password requested is the one inserted during CA key generation. To verify the certificate signature against the CA you can issue the following command:
 $ openssl verify -CAfile client-ca-crt.pem client-crt.pem
client-crt.pem: OK

 Now we have all the client certificates we need!
 -rw-rw-r-- 1 matteo matteo 1350 dic 26 17:59 client-ca-crt.pem
-rw-rw-r-- 1 matteo matteo 41 dic 26 18:06 client-ca-crt.srl
-rw------- 1 matteo matteo 1854 dic 26 17:58 client-ca-key.pem
-rw-rw-r-- 1 matteo matteo 1586 dic 26 18:06 client-crt.pem
-rw-rw-r-- 1 matteo matteo 1712 dic 26 18:04 client-csr.pem
-rw------- 1 matteo matteo 3243 dic 26 18:03 client-key.pem

 Step 4: Run the code!
 Move all certificates in a folder called certs:
 $ mkdir ~/mutual_authentication_example/certs
$ mv ~/mutual_authentication_example/*.pem ~/mutual_authentication_example/certs/
$ mv ~/mutual_authentication_example/*.srl ~/mutual_authentication_example/certs/

 Now create a server.js application:
 const fs = require("fs");
const https = require("https");
const options = {
 key: fs.readFileSync(`${__dirname}/certs/server-key.pem`),
 cert: fs.readFileSync(`${__dirname}/certs/server-crt.pem`),
 ca: [
 fs.readFileSync(`${__dirname}/certs/client-ca-crt.pem`)
],
 // Requesting the client to provide a certificate, to authenticate.
 requestCert: true,
 // As specified as "true", so no unauthenticated traffic
 // will make it to the specified route specified
 rejectUnauthorized: true
};
https
 .createServer(options, function(req, res) {
 console.log(
 new Date() +
 " " +
 req.connection.remoteAddress +
 " " +
 req.method +
 " " +
 req.url
);
 res.writeHead(200);
 res.end("OK!\n");
 })
 .listen(8888);

 Now create a client.js application:
 const fs = require("fs");
const https = require("https");
const message = { msg: "Hello!" };

const req = https.request(
 {
 host: "server.aaa.com",
 port: 8888,
 secureProtocol: "TLSv1_2_method",
 key: fs.readFileSync(`${__dirname}/certs/client-key.pem`),
 cert: fs.readFileSync(`${__dirname}/certs/client-crt.pem`),
 ca: [
 fs.readFileSync(`${__dirname}/certs/server-ca-crt.pem`)
],
 path: "/",
 method: "GET",
 headers: {
 "Content-Type": "application/json",
 "Content-Length": Buffer.byteLength(JSON.stringify(message))
 }
 },
 function(response) {
 console.log("Response statusCode: ", response.statusCode);
 console.log("Response headers: ", response.headers);
 console.log(
 "Server Host Name: " + response.connection.getPeerCertificate().subject.CN
);
 if (response.statusCode !== 200) {
 console.log(`Wrong status code`);
 return;
 }
 let rawData = "";
 response.on("data", function(data) {
 rawData += data;
 });
 response.on("end", function() {
 if (rawData.length > 0) {
 console.log(`Received message: ${rawData}`);
 }
 console.log(`TLS Connection closed!`);
 req.end();
 return;
 });
 }
);
req.on("socket", function(socket) {
 socket.on("secureConnect", function() {
 if (socket.authorized === false) {
 console.log(`SOCKET AUTH FAILED ${socket.authorizationError}`);
 }
 console.log("TLS Connection established successfully!");
 });
 socket.setTimeout(10000);
 socket.on("timeout", function() {
 console.log("TLS Socket Timeout!");
 req.end();
 return;
 });
});
req.on("error", function(err) {
 console.log(`TLS Socket ERROR (${err})`);
 req.end();
 return;
});
req.write(JSON.stringify(message));

 It’s now time to test. Open a terminal and start the server:
 $ node server.js

 Open another terminal and run the client:
 $ node client.js
TLS Connection established successfully!
Response statusCode: 200
Response headers: {
 date: 'Sat, 26 Dec 2020 17:26:13 GMT',
 connection: 'close',
 'transfer-encoding': 'chunked'
}
Server Host Name: server.aaa.com
Received message: OK!

TLS Connection closed!

 On the first terminal (the server) will be logged a new connection:
 $ node server.js
Sat Dec 26 2020 18:26:13 GMT+0100 (Central European Standard Time) ::ffff:127.0.0.1 GET /

 Conclusions
 Basically you have to explicitly include the CA of the server in the connection object of the client and vice versa. In this way the server will be able to verify the client certificate and the client will be able to verify the server certificate.
 I hope this example can help you implementing a mutual authentication between your endpoints in your applications. You can download demo files from this GitHub repository.

 Show Git branch name on shell prompt
 [image: calendar]24 Dec 2020 [image: author]Matteo Mattei [image: tags] git bash shell linux [image: comments] Maintaining multiple git repositories might became a mess specially if you often switch from one folder to another and if you are used to work on different branches. Basically you have to type every time git branch on the terminal to make sure to work on the correct working copy.
 If your OS is Linux (or MacOSx) and you have Bash installed, you can customize the Bash prompt to always show the current branch name in your working directory.
 First of all type ensure your default shell is /bin/bash
 matteo@barracuda ~ $ echo $SHELL
/bin/bash

 Then edit ~/.bashrc file and add the following lines at the bottom:
 parse_git_branch() {
 git branch 2> /dev/null | sed -e '/^[^*]/d' -e 's/* \(.*\)/(\1)/'
}

PS1="\u@\h \[\e[32m\]\w \[\e[91m\]\$(parse_git_branch)\[\e[00m\]$ "

 Basically we added the parse_git_branch() function which prints out the current git branch (if you are in a git project) and then reset the PS1 variable (the Bash prompt) calling the previously function.
 Now you have to enable the new configuration just typing the following or doing a new login:
 matteo@barracuda ~ $. ~/.bashrc

 Let’s try and see how it looks like:
 matteo@barracuda ~ $ cd src/myproject
matteo@barracuda ~/src/myproject (master)$

 That’s all! If you like to change colors or other PS1 parameters you can refer to the following resources:
 	Bash colors and formatting
	PS1 syntax variables

 How to configure a secure SFTP chroot jail
 [image: calendar]23 Aug 2019 [image: author]Matteo Mattei [image: tags] linux server ssh sftp [image: comments] If you have a linux server, openssh is almost always already present, so without any other tool you can configure a super secure SFTP chroot jail to allow your users to access the server limiting the visibility to their home directory.
 Start creating a new linux system group called sftponly:
 groupadd --system sftponly

 We create a system group because we want an ID lower than 1000 so that every new user will take a sequential UID. Now open /etc/ssh/sshd_config and make sure to have the following lines:
 PasswordAuthentication yes
ChallengeResponseAuthentication no

 Now replace the line starting with Subsystem with the following:
 Subsystem sftp internal-sftp

 This line tells SSH to use its internal sftp subsytem to mange SFTP connections.
 Now add the following lines at the bottom of the file:
 Match Group sftponly
 ChrootDirectory %h
 X11Forwarding no
 AllowTcpForwarding no
 ForceCommand internal-sftp

 Basically the above section describes how to handle connections from users belonging to sftponly group. In particular we are telling SSH to chroot the users to their home directory, does not allow X11 and TCP forwarding and force to use the internal sftp interface.
 After do that, restart ssh server to make the changes active:
 /etc/init.d/ssh restart

 Now the SFTP server is ready to be used but you must keep in mind some important rules otherwise it will not work!
 	every user home directory must belong to root:root
	every user home directory must have 0755 permissions
	every user must belong to sftponly group
	every first level folder in user home directory must belong to ${USER}:sftponly

 Let’s do an example: create a new user matteo with no login shell, assign it to sftpgroup group and set a password:
 useradd --create-home --shell /usr/sbin/nologin --user-group matteo
usermod --groups sftponly matteo
passwd matteo

 Assuming you want the following permissions:
 mkdir /home/matteo/pics # write access by user matteo
mkdir /home/matteo/musics # write access by user matteo
mkdir /home/matteo/logs # read only access by user matteo

 Configure the folders in this way:
 chown root:root /home/matteo
chmod 755 /home/matteo
chown matteo:sftponly /home/matteo/pics
chown matteo:sftponly /home/matteo/musics
chown matteo:sftponly /home/matteo/logs
chmod 555 /home/matteo/logs

 Now try with sftp command line client or with filezilla and test your new SFTP server. Files created from an SFTP session will belong to matteo:matteo.
 As you can understand, this configuration is very useful for web servers running with PHP-FPM where every VirtualHost runs with its own user and privileges, so you can restrict the access by user with a secure SFTP connection and at the same time avoid all the problems related to the files permissions management and the configuration of a separated FTP/FTPS server.
 I hope you enjoy this article. If you like it please leave a comment!

 Older Newer

